Implementing Privacy-Preserving Bayesian-Net Discovery for Vertically Partitioned Data
نویسندگان
چکیده
The great potential of data mining in a networked world cannot be realized without acceptable guarantees that private information will be protected. In theory, general cryptographic protocols for secure multiparty computation enable data mining with privacy preservation that is optimal with respect to the desired end results. However, the performance expense of such general protocols is prohibitive if applying the technology naively to non-trivial databases. The gap between theory and practice in cryptographic approaches is being narrowed, in part, by the introduction of problemspecific secure computation protocols. We describe our implementation of the recent YangWright secure protocol for Bayes-net discovery in vertically partitioned data. Our development occasions the proposal of a general coordination architecture for assembly of modularly described, complex protocols from independently implemented and tested subprotocol building blocks, which should facilitate future similar implementation efforts.
منابع مشابه
Privacy Preserving ID3 over Horizontally, Vertically and Grid Partitioned Data
We consider privacy preserving decision tree induction via ID3 in the case where the training data is horizontally or vertically distributed. Furthermore, we consider the same problem in the case where the data is both horizontally and vertically distributed, a situation we refer to as grid partitioned data. We give an algorithm for privacy preserving ID3 over horizontally partitioned data invo...
متن کاملA Privacy Review of Vertically Partitioned Data- based Privacy-Preserving Collaborative Filtering Schemes
E-commerce companies utilize collaborative filtering approaches to provide recommendations in order to attract customers. Consumer participation through supplying feedbacks is an important component for a recommendation system to produce accurate predictions. New companies in the marketplace might lack enough data for collaborative filtering purposes. Thus, they can come together to share their...
متن کاملPrivacy Preserving Näıve Bayes Classifier for Vertically Partitioned Data
Privacy-Preserving Data Mining – developing models without seeing the data – is receiving growing attention. This paper assumes a privacy-preserving distributed data mining scenario: data sources collaborate to develop a global model, but must not disclose their data to others. Näıve Bayes is often used as a baseline classifier, consistently providing reasonable classification performance. This...
متن کاملPrivacy Preserving Naïve Bayes Classifier for Vertically Partitioned Data
Privacy-Preserving Data Mining – developing models without seeing the data – is receiving growing attention. This paper assumes a privacy-preserving distributed data mining scenario: data sources collaborate to develop a global model, but must not disclose their data to others. Näıve Bayes is often used as a baseline classifier, consistently providing reasonable classification performance. This...
متن کاملPrivacy-Preserving Self-Organizing Map
Privacy-preserving data mining seeks to allow the cooperative execution of data mining algorithms while preserving the data privacy of each party concerned. In recent years, many data mining algorithms have been enhanced with privacy-preserving feature: decision tree induction, frequent itemset counting, association analysis, k-means clustering, support vector machine, Näıve Bayes classifier, B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005